

Reinforcement Learning

PhD. Sergio Guadarrama Google Research

CAT DOG

Programming is not enough

Programming

//	
/**	
+ Encrypt	using Mccvot
	and the spec
· dparam	string
* Oparan	string
* gretun	9 string
-/	
public to	nction mcrypt_encode(\$data, \$key)
Sinit	1178 = provet and do not a first and
Sini	<pre>vect scope = vectore = scope (), sthis-get_node());</pre>
retu	m Sthis-> add cipher noise(Sinit wer Renth Rent);
	<pre>\$key);</pre>
+ Decr	ypt using Mcrypt
= 0pa	at the
e gre	turn string
subli:	function access doubt for
	string conconcisions, Skey)
\$	<pre>data = \$this->_remove_cipher_noise(dota, Skey); init_size = mcrypt_pst_iv_size(Sthis->_get_cipher(), Sthis-> get_mode());</pre>
	(finit_size > strien(sdata))
	- Contraction - Sector
	Sight wert - shull determ
	Sdota = substrikting, Sinit Size)
	return rtris(scrypt_dscrypt[Sthisopt_cipher(), Skey, sists, Sthis-> set mode() field unth sheet
	- storest, surrest, (a);

Supervised Learning

+ Automates execution
- Needs full specification
of state and control flow

+ Learns representation and maps to a decision
- Needs expert label for every decision

Learning to Walk

Not all who wander are lost...

Supervised Learning

Reinforcement Learning

Supervised Learning is not enough

Supervised Learning

Reinforcement Learning

- Needs expert label for every decision

+ Agent learns from trial and error

Google AI

Learning to Walk

Learning to walk

Google Al

Learning to Walk

Learning to walk

Reinforcement Learning applications

How does RL work?

. - 0 • • . • •

. . . .

.

How does RL work?

Agent vs Environment

Environment

Foundation: Sequence of decisions

Foundation: Sequence of decisions

Foundation: Markov Decision Processes

Transition and Reward functions

$$\mathcal{P}^{a}_{s_{t},s_{t+1}} = P(s_{t+1}|s_{t},a_{t})$$

Current state, Action \rightarrow Next state

$$\mathcal{R}^{a_t}_{s_t,s_{t+1}} = E(r_t | s_t, s_{t+1}, a_t)$$

Current state, Action, Next state \rightarrow Reward

The Markov Property

Assumption:

Given the **present**, the **future** is independent of the **past**

i.e., no matter how you **reached** a state, all **future** states can be predicted from your **current** state and **future** actions

Objective: Learn Policy that Maximize "Return"

Return = Expected sum of discounted future rewards $E[R_t] = E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots]$

Policy

A distribution $\,\pi\,$ over actions given a

state.

 $a_t \sim \pi(a|s_t)$

Episodes

Reasoning under uncertainty

Unknown Environment model Known Environment

model

Multi-armed	Reinforcement
Bandits	Learning
Decision Theory	Planning with MDP
Actions	Actions
do not change	change
world state	world state

Value Functions & Q-Learning

Value Function

Goal: Choose actions that maximize return

OR: Visit states that maximize return

$$V^{\pi}(s) = E_{\pi}[R_t|s_t = s]$$

Value Function

		+1
		- 1
\bigcirc		

0.51)	0.72)	0.84)	1.00
• 0.27		• 0.55	-1.00
0.00	0.22 🔸	0.37	♦ 0.13

Action-Value Function (Q-function)

What is the expected return of taking an **action** *a* in a **state** *s* and then following a **policy** π ?

$$Q^{\pi}(s,a) = E_{\pi}[R_t|s_t = s, a_t = a]$$

Q-function: Concept

$$Q^{\pi}(s,a) = E_{\pi}[R_t|s_t = s, a_t = a]$$

Knowing reward requires knowing environment, so *Q*-function depends on agent's knowledge of the environment

Greedy Policy with Value-based RL

From the current state, choose action that has the highest estimated Q-value:

$$a^* = \arg\max_a Q^{\pi}(s, a)$$

Bellman Equation: Concept

- Q improves with experience
- When is Q "good enough"?
- Realize Q is recursive, meaning $Q(s,a) = R(s,a) + \gamma * \max Q(s',a')$

Bellman Equation: Concept

Q(s,a) after taking action "a" in state "s"

$$= R(s,a) + \gamma^* \max Q(s')$$

- $= \sum_{\Sigma_{s'}} [R(s,a,s') + \gamma^* \max Q(s')]$
- $= \sum_{\Sigma} \left(P(s'|s,a)^* [R(s,a,s') + \gamma^* \max Q(s')] \right)$

Bellman Equation: Math

Define *Q** as the optimal *Q*-function which satisfies:

$$Q^{*}(s, a) = \sum_{s'} P(s' | s, a) \left[R(s, a, s') + \gamma \max_{a'} Q^{*}(s', a') \right]$$
$$= \mathbb{E}_{s'} \left[R(s, a, s') + \gamma \max_{a'} Q^{*}(s', a') \mid s, a \right]$$

Q-Learning Algorithm

Act in the world and collect an experience sample:

state, action, reward, next state (s, a, r, s')

Update Q function based on the new sample

Bellman Error Gradient

Goal: Minimize Bellman Error

Q-Learning update

Goal: Minimize Bellman Error

Deep

Q-Learning with DQNs

Let's add Neural Networks to Q-Learning!

Why?

- Neural nets are universal function approximators
- They can approximate Q(s,a) with a deep neural network
- They can scale to large state spaces, e.g., image pixels

DQN

Neural net that finds Q-values for every possible action

Introduced by DeepMind to play Atari games

DQN Training: Naive approach

- Use DQN Network to decide action
- Record experience and update *Q*
- Train DQN on new Q
- Problems:
 - DQN is unstable
 - Experience is not i.i.d.

Trick 1 of 2: Replay Buffers

Idea: Collect experience, then randomly sample from it, to avoid temporal correlation in updates

Trick 2 of 2: Target Networks

Putting it together...

Comparison

Q-Learning:

Minimize discrepancy in Q-values of states

Terminate on reaching a "fixed-point" of Bellman equation

Supervised Learning:

Minimize deviation from training labels

Terminate on reaching a minimum of loss function

What do you need to do RL?

- Algorithm: DQN, PPO, SAC, ...
- Policy, Networks
- Environments
- Replay Buffers
- Training
- Metrics
- Bellman updates
- ...

Google Al

TF-Agents available in GitHub

https://github.com/tensorflow/agents pip install tf-agents

- Learn using Colabs <u>DQN-Cartpole</u> or <u>SAC-Minitaur</u>.
- Ready to solve important problems
- Contributions and PRs are welcome:
 - Environments, Algorithms, ...

Available Environment Suites

- Gym
- Atari
- Mujoco
- PyBullet
- DM-Control
- Yours?

Google Al

Available Agents

- DQN, DDQN, DQN-RNN, C51
- DDPG, TD3
- PPO, PPO-RNN
- REINFORCE
- SAC
- Behavioral Cloning
- Contextual Bandits
- More coming soon! Yours?

Fully tested

Model quality regression tests

Speed regression tests

Applications,

Challenges,

Next Steps...

Variety of skills on a variety of robots

Safe and feasible motion in dynamic world at scale.

 [Lyapunov-based Safe Policy Optimization for Continuous Control," Chow, Nachum, Faust, Ghavamzadeh, Duenez-Guzman, under submission] [pdf, Video]
 [Long-Range Indoor Navigation with PRM-RL, Francis, Faust, Chiang, Hsu, Kew, Fiser, Lee @ under submission] [pdf, Video,]
 [Learning Navigation Behaviors End to End with AutoRL, Chiang*, Faust,* Fiser, Francis, RA-L/ICRA 2019] [pdf, Video]
 [PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling-based Planning, Faust, Ramirez, Fiser, Oslund, Francis, Davidson, Tapia @ ICRA 2018)] [pdf, Video]

Learn end-to-end motion of complex robots dynamic world

Direct transfer

RL for safe obstacle avoidance in simple environments

Areas of interest:

- Articulated robots
- Nonlinear dynamics
- Multi-agent systems
- Task distribution
- Adaptation
- Safe RL

Run in real world, unseen environments Adapt to changes on the go

Learn end-to-end navigation and locomotion

- Locomotion coupled with navigation
- Navigation from depth maps
 - (and soon RGB)
- Sim2real and online training
- Navigation without localization

Research Interns

Google Research is looking for 2021 Summer Research Interns.

https://cutt.ly/2gmkcUP

Google AI

Google Al Residency Program

The Google Al Residency Program is a 12-18 months research training role designed to jumpstart or advance your career in machine learning research.

g.co/airesidency

Google Al

Thanks

