
PhD. Sergio Guadarrama
Google Research

@sguada

Reinforcement Learning

http://twitter.com/sguada


ConvNets



Supervised LearningProgramming

+ Learns representation and 
maps to a decision

- Needs expert label for 
every decision

+ Automates execution
- Needs full specification 
of state and control flow

Programming is not enough



Learning to Walk



Supervised Learning Reinforcement Learning

Not all who wander are lost...

https://en.wikipedia.org/wiki/File:Campus-classroom.jpg
https://en.wikipedia.org/wiki/File:Campus-classroom.jpg
https://commons.wikimedia.org/wiki/File:JJ%27s_Beautiful_Mess_free_creative_commons_(4269396864).jpg


Supervised Learning

- Needs expert label for every 
decision

Reinforcement Learning

+ Agent learns from 
trial and error

Agent

Environment

ActionRewardState

Supervised Learning is not enough



Learning to walk

Learning to Walk



Learning to walk

Learning to Walk



Reinforcement Learning applications

https://commons.wikimedia.org/wiki/File:Go_board.jpg
https://media.giphy.com/media/fH0BZK0HFoRERbo1it/giphy.gif


How does RL work?

How does RL 
work?



Agent
Environment

(1) Observation

(2) Action

(3) Reward

Agent vs Environment



Foundation: Sequence of decisions

at

aT-1



Foundation: Sequence of decisions

at at+1 aT-1

rT

st st+1 sT-1 sT

rt+1
rT-1

at

aT-1



Foundation: Markov Decision Processes

at at+1 aT-1

rT

st st+1 sT-1 sT

rt+1
rT-1

Environment 
states

Agent 
actions Rewards



Current state, Action, Next state → Reward

at
st st+1

rt+1

Current state, Action → Next state

Transition and Reward functions



Assumption: 

Given the present, the future is independent of the past

i.e., no matter how you reached a state,
all future states can be predicted from your current state and future actions

The Markov Property

at aT-1

rT

st-1 st sT-1 sT

rt
rT-1

st-2



at at+1 aT-1

rT

st st+1 sT-1 sT

rt+1
rT-1

Return = Expected sum of discounted future rewards

Objective: Learn Policy that Maximize “Return”



A distribution  𝛑  over actions given a 
state.

Policy



at at+1 aT-1

rT

st st+1 sT-1 sT

rt+1
rT-1

Finish

Terminal 
State

Termination reasons:
● Goal acquired
● Fatal mistake
● Step limit reached

Episodes



Unknown
Environment

model

Multi-armed 
Bandits

Reinforcement 
Learning

Known
Environment

model
Decision Theory Planning with MDP

Actions
do not change 

world state

Actions
change

world state

Reasoning under uncertainty



Value Functions & Q-Learning



Goal: Choose actions that maximize return

OR: Visit states that maximize return

Value Function



Value Function



What is the expected return of 
taking an action a in a state s
and then following a policy    ?

Action-Value Function (Q-function)



Knowing reward requires knowing 
environment, so Q-function 
depends on agent’s knowledge of 
the environment

Q-function: Concept



From the current state, choose action that has 
the highest estimated Q-value:

Greedy Policy with Value-based RL



● Q improves with experience
● When is Q “good enough”?
● Realize Q is recursive, meaning
        Q(s,a) = R(s,a) + γ * max Q(s′,a′)

Bellman Equation: Concept



Q(s,a) after taking action “a” in state “s”

 =     R(s,a) + γ*max Q(s′)

 =     ∑s′ [R(s,a,s′) + γ*max Q(s′)]

 =     ∑ (P(s′|s,a)*[R(s,a,s′) + γ*max Q(s′)])

Bellman Equation: Concept



Define Q* as the optimal Q-function which 
satisfies:

Bellman Equation: Math



Act in the world and collect an experience sample:
state, action, reward, next state (s, a, r, s’)

Update Q function based on the new sample

Q0 Q1 Q2 Q*
(s, a, r, s’) (s’, a’, r’, s’’)

Randomly 
initialized

Update 
Q-function 
at Q(s, a)

Update 
Q-function 
at Q(s’, a’)

Converge 
to optimal 

Q*

… 

Q-Learning Algorithm



Goal: Minimize Bellman Error
Old

estimate

Actual
Reward

Discount

New 
estimate

Bellman Error Gradient



Goal: Minimize Bellman Error

Bellman Error 
Gradient

Learning Rate Discount

Q-Learning update



Deep 

Q-Learning

with DQNs

s

Q(s,left)

Q(s,right)

Q(s,fire)



Why?

● Neural nets are universal function approximators
● They can approximate Q(s,a) with a deep neural network
● They can scale to large state spaces, e.g., image pixels

Let’s add Neural Networks to Q-Learning!



Neural net that finds Q-values 
for every possible action

s

Q(s,left)

Q(s,right)

Q(s,fire)

Introduced by 
DeepMind to play 
Atari games

DQN



● Use DQN Network to decide action
● Record experience and update Q
● Train DQN on new Q
● Problems:

○ DQN is unstable
○ Experience is not i.i.d.

DQN Training: Naive approach



Idea:
Collect experience,
then randomly sample from it,
to avoid temporal correlation in updates

(s,a,r,s’) 3

(s,a,r,s’) 2

(s,a,r,s′) 1

replay buffer

minibatch of 
tuples

s, r a

(s,a,r,s’)

Agent
update

Trick 1 of 2: Replay Buffers



Target
slow 

update
Idea:
Use separate net
to compute error.
Update it slowly for more 
stability (s,a,r,s’) 3

(s,a,r,s’) 2

(s,a,r,s′) 1

replay buffer

minibatch of 
tuples

s, r a

(s,a,r,s’)

Agent
update

Bellman Error 
Gradient:

Trick 2 of 2: Target Networks



Minibatch SGD with 
experience tuples, 

minimizes Bellman error

(s,a,r,s’) 3

(s,a,r,s’) 2

(s,a,r,s′) 1

replay buffer

minibatch of 
tuples

(s,a,r,s’)

update

Deep Q-Learning
==

Supervised Learning of 
Q-Network !!!

Target

slow 
update

s, r a

Agent

Putting it together...



Q-Learning:

Minimize discrepancy in Q-values 
of states

Terminate on reaching a 
“fixed-point” of Bellman equation

Supervised Learning:

Minimize deviation from 
training labels

Terminate on reaching a 
minimum of loss function

Comparison



● Algorithm: DQN, PPO, SAC, ...

● Policy, Networks

● Environments

● Replay Buffers

● Training

● Metrics

● Bellman updates

● ...
Replay
Buffer

Collect Policy

tf.data.Dataset

Agent

[Python]
Environment/Task

What do you need to do RL?



● Learn using Colabs DQN-Cartpole or SAC-Minitaur.
● Ready to solve important problems
● Contributions and PRs are welcome:

○ Environments, Algorithms, ...

https://github.com/tensorflow/agents
pip install tf-agents

TF-Agents available in GitHub

https://github.com/tensorflow/agents/tree/master/tf_agents/colabs
https://github.com/tensorflow/agents/tree/master/tf_agents/colabs
https://github.com/tensorflow/agents


● Gym

● Atari

● Mujoco

● PyBullet

● DM-Control

● Yours?

Available Environment Suites



● DQN, DDQN, DQN-RNN, C51
● DDPG, TD3
● PPO, PPO-RNN
● REINFORCE
● SAC
● Behavioral Cloning
● Contextual Bandits
● More coming soon! Yours?

Model quality regression tests

Speed regression tests

Fully tested

Available Agents



Applications,

Challenges,

Next Steps...

Q-Learning DQN

REINFORCE

Actor-Critic

A3C
DDPG

Hierarchical RL

Multi-Agent RL

RL with
Auxiliary tasks

Model-based



Differential drive.
Noisy sensors.
Inertia.

Kinodynamic constraints.
Noisy sensors.

Fetch Freight Mintaur Car RacerMuJoCo

Nonlinear dynamics.
High degree of freedom.
No sensors.

Variety of skills on a variety of robots



Safe and feasible motion in dynamic world at scale.

[ Lyapunov-based Safe Policy Optimization for Continuous Control,” 
Chow, Nachum, Faust, Ghavamzadeh, Duenez-Guzman, under submission] [ pdf, Video]

[ Long-Range Indoor Navigation with PRM-RL, Francis, Faust, Chiang, Hsu, Kew, Fiser, Lee @ under submission ] [ pdf, Video,]
[ Learning Navigation Behaviors End to End with AutoRL, Chiang*, Faust,* Fiser, Francis, RA-L/ICRA 2019 ] [ pdf, Video]

[PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling-based Planning, Faust, 
Ramirez, Fiser, Oslund, Francis, Davidson, Tapia @ ICRA 2018)] [pdf, Video]

https://arxiv.org/abs/1901.10031
http://go/icml-safety-mp4
https://arxiv.org/abs/1902.09458
https://www.youtube.com/watch?v=xN-OWX5gKvQ
https://arxiv.org/abs/1809.10124
https://docs.google.com/document/d/1NQrAWwOsIonwES0tW5aPxAYXqf1CvyOb5tjmV1XusjY/edit?usp=sharing
https://youtu.be/0UwkjpUEcbI
https://arxiv.org/abs/1710.03937
https://www.youtube.com/watch?v=_XiaL5W-5Lg


Areas of interest: 
● Articulated robots
● Nonlinear dynamics
● Multi-agent systems

RL for safe obstacle avoidance in 
simple environments

Run in real world, unseen environments
Adapt to changes on the go

Direct transfer 

● Task distribution
● Adaptation
● Safe RL

Learn end-to-end motion of complex robots dynamic world



● Locomotion coupled with navigation
● Navigation from depth maps 

○ (and soon RGB)
● Sim2real and online training
● Navigation without localization

[ On-going research, Ichter, Tan, Zhang, Faust] 

Learn end-to-end navigation and locomotion



g.co/airesidency/apply

Research Interns

Google Research is 
looking for 2021 
Summer Research 
Interns.

https://cutt.ly/2gmkcUP

https://cutt.ly/2gmkcUP


g.co/airesidency/apply

Google AI Residency 
Program

The Google AI Residency 
Program is a 12-18 
months research training 
role designed to 
jumpstart or advance 
your career in machine 
learning research.

g.co/airesidency 

http://g.co/airesidency


Thanks

Questions
Comments


