Deformation Models for Image and Video Generation

Stéphane Lathuilière

LTCI, Télécom Paris, Institut polytechnique de Paris, France

Multimedia and Human Understanding Group (MHUG), University of Trento, Italy

December 2020

Why do we need to generate images and videos?

Artistic / Editing / marketing purposes

Photo editing

Augmented reality ^a

 Many other applications: video games, increasing some intrinsic image properties...

^aimage from *zugara* company

Machine Learning Tasks

• Generate annotated data: Head pose [1]

- Learning from few samples
- Domain adaptation

S.Lathuilère, R.Juge, P.Mesejo, R.Munoz-Salinas, R.Horaud, Deep Mixture of Linear Inverse Regressions Applied to Head-Pose estimation, CVPR 2017

From Noise to Image

^[4] P.Isola, J.-Y.Zhu, T.Zhou, A.A.Efros, Image-to-Image Translation with Conditional Adversarial Networks, CVPR, 2017

From Noise to Image

Image-to-Image translation [4]

^[4] P.Isola, J.-Y.Zhu, T.Zhou, A.A.Efros, Image-to-Image Translation with Conditional Adversarial Networks, CVPR, 2017

^[4] P.Isola, J.-Y.Zhu, T.Zhou, A.A.Efros, Image-to-Image Translation with Conditional Adversarial Networks, CVPR, 2017

Pose-based Human Image Generation [5]

^[5] L. Ma, X. Jia, Q. Sun, B. Schiele, T. Tuytelaars, and L. Van Gool, Pose-guided person image generation, NIPS, 2017

^[5] L. Ma, X. Jia, Q. Sun, B. Schiele, T. Tuytelaars, and L. Van Gool, Pose-guided person image generation, NIPS, 2017

Pose-based Human Image Generation

Pose-based Human Image Generation

We need a deformation model!

^[6] A. Siarohin, E. Sangineto, S. Lathuilière, N. Sebe, Deformable GANs for Pose-based Human Image Generation, CVPR, 2018

^[6] A. Siarohin, E. Sangineto, S. Lathuilière, N. Sebe, Deformable GANs for Pose-based Human Image Generation, CVPR, 2018

^[6] A. Siarohin, E. Sangineto, S. Lathuilière, N. Sebe, Deformable GANs for Pose-based Human Image Generation, CVPR, 2018

The body parts are combined:

$$d(F) = max_{h=1,...,10}F'_h,$$
(1)

^[6] A. Siarohin, E. Sangineto, S. Lathuilière, N. Sebe, Deformable GANs for Pose-based Human Image Generation, CVPR, 2018

• \mathcal{L}_1 and \mathcal{L}_2 produce blurred images.

We propose a *nearest-neighbour* loss \mathcal{L}_{NN}

- Compute in a feature space g(x).
- $g(\cdot)$: externally trained network.

$$\mathcal{L}_{1}^{g}(\hat{x}, x_{b}) = \sum_{\mathbf{p} \in g(\hat{x})} ||g(\hat{x})(p) - g(x_{b})(p)||_{1},$$
(2)

• \mathcal{L}_1 and \mathcal{L}_2 produce blurred images.

We propose a *nearest-neighbour* loss \mathcal{L}_{NN}

- Compute in a feature space g(x).
- $g(\cdot)$: externally trained network.

$$\mathcal{L}_{1}^{g}(\hat{x}, x_{b}) = \sum_{\mathbf{p} \in g(\hat{x})} ||g(\hat{x})(p) - g(x_{b})(p)||_{1},$$
(2)

$$\mathcal{L}_{NN}(\hat{x}, x_b) = \sum_{\mathbf{p} \in g(\hat{x})} \min_{\mathbf{q} \in \mathcal{N}(\mathbf{p})} ||g(\hat{x})(\mathbf{p}) - g(x_b)(\mathbf{q})||_1,$$
(3)

 ${\ensuremath{\, \bullet }}$ where $\mathcal{N}(\mathbf{p})$ is a $n \times n$ local neighbourhood of point \mathbf{p}

Pose-based Human Image Generation: ablation

Figure: Qualitative results on the Market-1501 dataset.

Pose-based Human Image Generation: ablation

Figure: Qualitative results on the DeepFashion dataset.

Table: Comparison with the state of the art on the DeepFashion dataset.

Model	SSIM	IS
Ma et al. [7]	0.762	3.090
Ma et al. [8]	0.614	3.228
Esser et al. [9]	0.786	3.087
<i>Ours</i>	0.756	3.439

^[7] L. Ma, X. Jia, Q. Sun, B. Schiele, T. Tuytelaars, and L. Van Gool, Pose-guided person image generation, NIPS, 2017

^[8] L. Ma, Q. Sun, S. Georgoulis, L. Van Gool, B. Schiele, and M. Fritz, Disentangled person image generation, CVPR, 2018

^[9] P. Esser, E. Sutter, and B. Ommer, A variational u-net for conditional appearance and shape generation, CVPR, 2018

Pose-based Human Image Generation: Re-ID

Query	1 2 3 Gallery	4 5
IDE	E + Euclidean [10] <i>Rank 1</i>	Discr. Embedding [11] <i>Rank 1</i>
No augmentation	73.9	78.3

Table: Data augmentation for Re-ID on the Market-1501 (*Rank 1* in %).

[12] A. Siarohin, S. Lathuilière, E. Sangineto, N. Sebe, Appearance and Pose-Conditioned Human Image Generation using Deformable GANs, TPAMI, 2019

^[7] L.Ma, X.Jia, Q.Sun, B.Schiele, T.Tuytelaars, and L.Van Gool, Pose-guided person image generation, NIPS, 2017

^[9] P. Esser, E. Sutter, and B. Ommer, A variational u-net for conditional appearance and shape generation, CVPR, 2018

^[10] L.Zheng, Y.Yang, and A.G.Hauptmann, Person re-identification: Past, present and future, arXiv, 2016

^[11] Z. Zheng, L. Zheng, and Y. Yang, A discriminatively learned CNN embedding for person reidentification, TOMCCAP, 2018

Pose-based Human Image Generation: Re-ID

Query 1 2 3 4 5 Gallery Callery				
	IDE + Euclidean [10] <i>Rank 1</i>	Discr. Embedding [11] <i>Rank 1</i>		
No augmentation	73.9	78.3		
<i>Ours (Full)</i> [12]	78.9	81.4		

Table: Data augmentation for Re-ID on the Market-1501 (*Rank 1* in %).

[12] A. Siarohin, S. Lathuilière, E. Sangineto, N. Sebe, Appearance and Pose-Conditioned Human Image Generation using Deformable GANs, TPAMI, 2019

^[7] L.Ma, X.Jia, Q.Sun, B.Schiele, T.Tuytelaars, and L.Van Gool, Pose-guided person image generation, NIPS, 2017

^[9] P. Esser, E. Sutter, and B. Ommer, A variational u-net for conditional appearance and shape generation, CVPR, 2018

^[10] L.Zheng, Y.Yang, and A.G.Hauptmann, Person re-identification: Past, present and future, arXiv, 2016

^[11] Z. Zheng, L. Zheng, and Y. Yang, A discriminatively learned CNN embedding for person reidentification, TOMCCAP, 2018

Pose-based Human Image Generation: Re-ID

	IDE + Euclidean [10] <i>Rank 1</i>	Discr. Embedding [11] <i>Rank 1</i>
No augmentation	73.9	78.3
Ours (Full) [12]	78.9	81.4
Ours (Baseline)	68.1	70.6
Ma et al. [7]	66.9	73.9
Esser et al. [9]	58.1	63.1

Table: Data augmentation for Re-ID on the Market-1501 (*Rank 1* in %).

[12] A. Siarohin, S. Lathuilière, E. Sangineto, N. Sebe, Appearance and Pose-Conditioned Human Image Generation using Deformable GANs, TPAMI, 2019

^[7] L.Ma, X.Jia, Q.Sun, B.Schiele, T.Tuytelaars, and L.Van Gool, Pose-guided person image generation, NIPS, 2017

^[9] P. Esser, E. Sutter, and B. Ommer, A variational u-net for conditional appearance and shape generation, CVPR, 2018

^[10] L.Zheng, Y.Yang, and A.G.Hauptmann, Person re-identification: Past, present and future, arXiv, 2016

^[11] Z. Zheng, L. Zheng, and Y. Yang, A discriminatively learned CNN embedding for person reidentification, TOMCCAP, 2018

- Multiple input images
- How to select the relevant information in each image depending on:
 - pose difference
 - potential occlusions
 - image quality

^[13] S. Lathuilière, A. Siarohin, E. Sangineto, and N. Sebe, Attention-based Fusion for Multi-source Human Image Generation, WACV 2020

^[14] O.Ronneberger, P.Fischer, and T.Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation

Skip connections

^[14] O.Ronneberger, P.Fischer, and T.Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation

^[13] S. Lathuilière, A. Siarohin, E. Sangineto, and N. Sebe, Attention-based Fusion for Multi-source Human Image Generation, WACV 2020

^[13] S. Lathuilière, A. Siarohin, E. Sangineto, and N. Sebe, Attention-based Fusion for Multi-source Human Image Generation, WACV 2020

We propose [13]:

 $)\odot oldsymbol{\xi}_{r}^{i},$ Att(features skip

connection

^[13] S. Lathuilière, A. Siarohin, E. Sangineto, and N. Sebe, Attention-based Fusion for Multi-source Human Image Generation, WACV 2020

^[13] S. Lathuilière, A. Siarohin, E. Sangineto, and N. Sebe, Attention-based Fusion for Multi-source Human Image Generation, WACV 2020

We propose [13]: $F_{r} = \sum_{i=1}^{M} Att(\underbrace{\psi_{r}}_{\text{features}}, \underbrace{\xi_{r}^{i}}_{\text{skip}}) \odot \xi_{r}^{i}, \quad (4)$

^[13] S. Lathuilière, A. Siarohin, E. Sangineto, and N. Sebe, Attention-based Fusion for Multi-source Human Image Generation, WACV 2020

Figure: A qualitative evaluation on the Market-1501 dataset.

^[13] S. Lathuilière, A. Siarohin, E. Sangineto, and N. Sebe, Attention-based Fusion for Multi-source Human Image Generation, WACV 2020

Figure: A qualitative evaluation on the Market-1501 dataset.

^[13] S. Lathuilière, A. Siarohin, E. Sangineto, and N. Sebe, Attention-based Fusion for Multi-source Human Image Generation, WACV 2020

Figure: A qualitative evaluation on the Market-1501 dataset.

^[13] S. Lathuilière, A. Siarohin, E. Sangineto, and N. Sebe, Attention-based Fusion for Multi-source Human Image Generation, WACV 2020

Figure: A qualitative evaluation on the Market-1501 dataset.

^[13] S. Lathuilière, A. Siarohin, E. Sangineto, and N. Sebe, Attention-based Fusion for Multi-source Human Image Generation, WACV 2020

Pose-guided generation for video generation?

Pose-guided generation for video generation?

Naive solution: appearance transfer

Problems:

• It requires a detector

^[15] A. Siarohin, S. Lathuilière, S. Tulyakov , E. Ricci, N. Sebe, Animating Arbitrary Objects via Deep Motion Transfer , CVPR 2019

Problems:

• It requires a detector

• Does not work when the shapes of the object are different

^[15] A. Siarohin, S. Lathuilière, S. Tulyakov , E. Ricci, N. Sebe, Animating Arbitrary Objects via Deep Motion Transfer , CVPR 2019

Problems:

• It requires a detector

• Does not work when the shapes of the object are different

We propose: Self-supervised Motion Transfer [15].

^[15] A. Siarohin, S. Lathuilière, S. Tulyakov , E. Ricci, N. Sebe, Animating Arbitrary Objects via Deep Motion Transfer , CVPR 2019

Self-supervised Motion Transfer [15]

Self-supervised training.

^[15] A. Siarohin, S. Lathuilière, S. Tulyakov , E. Ricci, N. Sebe, Animating Arbitrary Objects via Deep Motion Transfer , CVPR 2019

Self-supervised training.

^[15] A. Siarohin, S. Lathuilière, S. Tulyakov , E. Ricci, N. Sebe, Animating Arbitrary Objects via Deep Motion Transfer , CVPR 2019

Image animation at test time.

^[15] A. Siarohin, S. Lathuilière, S. Tulyakov , E. Ricci, N. Sebe, Animating Arbitrary Objects via Deep Motion Transfer , CVPR 2019

^[15] A. Siarohin, S. Lathuilière, S. Tulyakov , E. Ricci, N. Sebe, Animating Arbitrary Objects via Deep Motion Transfer , CVPR 2019

Again, we have an alignment problem.

^[15] A. Siarohin, S. Lathuilière, S. Tulyakov , E. Ricci, N. Sebe, Animating Arbitrary Objects via Deep Motion Transfer , CVPR 2019

Again, we have an alignment problem.

^[15] A. Siarohin, S. Lathuilière, S. Tulyakov, E. Ricci, N. Sebe, Animating Arbitrary Objects via Deep Motion Transfer, CVPR 2019

Image animation: Results

Image animation: Results

Image animation: Results

		Tai-Chi		Ne	emo (Fac	ce)	Bair
	\mathcal{L}_1	AKD	AED	\mathcal{L}_1	AKD	AED	\mathcal{L}_1
X2Face [16]	0.068	4.50	0.27	0.022	0.47	0.140	0.069
Ours [15]	0.050	2.53	0.21	0.017	0.37	0.072	0.025

 Table:
 Video reconstruction comparisons.
 We employ AKD: Average Keypoint

 Distance and AED:
 Average Euclidean Distance

^[15] A. Siarohin, S. Lathuilière, S. Tulyakov , E. Ricci, N. Sebe, Animating Arbitrary Objects via Deep Motion Transfer , CVPR 2019

^[16] X2Face: A network for controlling face generation by using images, audio, and pose codes. O.Wiles, A.S.Koepke, A. Zisserman, ECCV 2018

		Tai-Chi		Ne	emo (Fac	ce)	Bair
	\mathcal{L}_1	AKD	AED	\mathcal{L}_1	AKD	AED	\mathcal{L}_1
X2Face [16]	0.068	4.50	0.27	0.022	0.47	0.140	0.069
Ours [15]	0.050	2.53	0.21	0.017	0.37	0.072	0.025

 Table:
 Video reconstruction comparisons.
 We employ AKD: Average Keypoint

 Distance and AED:
 Average Euclidean Distance

Tai-Chi	Nemo	Bair
85.0%	79.2%	90.8%

Table: User study results on image animation. Proportion of times our approach is preferred over X2face [16].

^[15] A. Siarohin, S. Lathuilière, S. Tulyakov , E. Ricci, N. Sebe, Animating Arbitrary Objects via Deep Motion Transfer , CVPR 2019

^[16] X2Face: A network for controlling face generation by using images, audio, and pose codes. O.Wiles, A.S.Koepke, A. Zisserman, ECCV 2018

$$\mathcal{T}_{\mathbf{X}\leftarrow\mathbf{R}}(p) = \mathcal{T}_{\mathbf{X}\leftarrow\mathbf{R}}(p_k) + o(\|p - p_k\|),$$
(5)

^[17] A. Siarohin, S. Lathuilière, S. Tulyakov, E. Ricci, N. Sebe, First Order Motion Model for Image Animation , NeurIPS 2019

$$\mathcal{T}_{\mathbf{X}\leftarrow\mathbf{R}}(p) = \mathcal{T}_{\mathbf{X}\leftarrow\mathbf{R}}(p_k) + \left(\frac{d}{dp}\mathcal{T}_{\mathbf{X}\leftarrow\mathbf{R}}(p)\Big|_{p=p_k}\right)(p-p_k) + o(\|p-p_k\|), \quad (5)$$

^[17] A. Siarohin, S. Lathuilière, S. Tulyakov, E. Ricci, N. Sebe, First Order Motion Model for Image Animation , NeurIPS 2019

Future works:

- Improve activity recognition methods
- Condition motion on other inputs
- Compression for video call (e.g. Skype)

Thank You! Thanks to Aliaksandr, Sergey, Enver, Elisa and Nicu!

- A. Siarohin, E. Sangineto, S. Lathuilière, N. Sebe, Deformable GANs for Pose-based Human Image Generation, CVPR 2018
- A. Siarohin, S. Lathuilière, E. Sangineto, N. Sebe, Appearance and Pose-Conditioned Human Image Generation using Deformable GANs, T-PAMI, 2019.
- S. Lathuilière, A. Siarohin, E. Sangineto, and N. Sebe, Attention-based Fusion for Multi-source Human Image Generation, WACV 2020
- A. Siarohin, **S. Lathuilière**, S. Tulyakov , E. Ricci, N. Sebe, Animating Arbitrary Objects via Deep Motion Transfer, CVPR 2019
- A. Siarohin, S. Lathuilière, S. Tulyakov, E. Ricci, N. Sebe, First Order Motion Model for Image Animation, NeurIPS 2019