Toma de decisiones y modelización de la opinión humana

Los seres humanos viven en un constante proceso de ofrecer y pedir opiniones. La toma de decisiones (TD, o Decision Making en inglés) es el proceso de hacer elecciones identificando una decisión, recopilando información y evaluando soluciones alternativas a través de opiniones de expertos. La TD es un problema que ha ido evolucionando para adaptarse a las necesidades de la sociedad. Con el aumento del uso de las redes sociales y los teléfonos inteligentes, los procesos de TD han tenido que adaptarse a un entorno completamente nuevo que cuenta con un alto número de usuarios e información.

El auge de la era digital ha convertido a las redes sociales en una de las plataformas más utilizadas para compartir opiniones y aprovechar la sabiduría de la multitud. Las opiniones extraídas del Social Media o los medios sociales son muy valiosas ya que proporcionan nuevos conocimientos y experiencias de una manera cómoda. En este escenario, la toma de decisiones de la multitud se refiere a la sabiduría de las masas que se ofrece de manera natural en las plataformas de redes sociales, donde un gran número de usuarios comparten opiniones. El Wisdom of Crowd (traducido como teoría de la sabiduría de la multitud) establece que grupos grandes y diversos de personas independientes y descentralizadas toman decisiones más inteligentes que solo unos pocos. La extracción y el análisis de las opiniones humanas de la multitud en los medios sociales son fundamentales para desarrollar modelos de toma de decisiones de grupo inteligentes aplicados al mundo real.

Investigadores en DaSCI desarrollan nuevos métodos de TD que resuelven los desafíos planteados por el paradigma de Big Data y las redes sociales mediante el uso de opiniones basadas en lenguaje natural y ontologías difusas, entre otros, junto con la gestión de la representación de preferencias bajo incertidumbre (preferencias fuzzy, preferencias lingüísticas, …) y haciendo uso de computación avanzada de palabras, el procesamiento del lenguaje y el análisis de sentimientos.

Principales líneas actuales de investigación de DaSCI:

  • Toma de decisiones de grupo (Group Decision Making). En un problema de GDM, un grupo de expertos debe clasificar, según su idoneidad, un conjunto de alternativas. GDM genera una clasificación de alternativas basada en esta información. Las decisiones deben ser consensuadas al involucrar las opiniones de todos los expertos en el proceso. Hoy en día, la aplicación de GDM es fundamental para la toma de decisiones en el mundo real.
  • Toma de decisiones por consenso o procesos de consenso. El consenso son procesos de toma de decisiones de grupo en los que los participantes desarrollan y deciden propuestas con el objetivo o requisito de ser aceptadas por todos. El enfoque en establecer un acuerdo con al menos la mayoría o la supermayoría y evitar opiniones improductivas diferencia al consenso de la unanimidad, que requiere que todos los participantes apoyen una decisión.
  • Opiniones humanas de la multitud y toma de decisiones de la multitud (Crowd Decision Making). Los usuarios de las redes sociales cumplen con estos requisitos, por lo que estos entornos son perfectos para capturar opiniones de la multitud. Los textos en lenguaje natural publicados en las redes sociales ofrecen opiniones valiosas pero presentan muchos desafíos para extraerlas. Necesitamos abordar muchos desafíos para aprovechar la sabiduría de las masas y explotar las opiniones de la multitud de las redes sociales: procesamiento de textos en lenguaje natural, inferencia de opiniones humanas y análisis de relaciones entre usuarios, entre otros.
  • Toma de decisiones confiable y segura. Para crear nuevos métodos de TD inteligentes y seguros, podemos utilizar tecnologías emergentes como la inteligencia artificial explicativa (XAI) y los métodos de blockchain. Los métodos de XAI hacen que los procesos de los métodos de TD sean comprensibles para los usuarios. Los métodos de blockchain eliminan el requisito de tener un único moderador que gestione el proceso de TD. Si el moderador está presente, es fácil que sea corrompido o manipulado para llevar el proceso de TD a resultados no deseados para los expertos.

Investigadores relacionados:

Letra:

  Nombre Email Área Cat.
Alonso Burgos, Sergio zerjioi@ghzu_D4knMugr.es Inteligencia Computacional DaSCI Doctor
Barranco García, Manuel José barranco@ujaeIl2iDaIgn.es
Cabrerizo Lorite, Francisco Javier cabrerizo@decsai.ugr.09IRO@nL0DGves
Chiclana Parrilla, Francisco chiclana@dmu.atNw1Pin2c.uk
Cobo Martín, Manuel Jesús mjcoboBUf8Jx@ugr.es Ciencia de Datos y Big Data DaSCI Doctor
García Cabello, Julia cabello@ugr.6w6D5m6Yuges
García Cabrera, Lina Guadalupe lina@uBXctvUCTD.v7jaen.es
Herrera Triguero, Francisco herrera@dTO26_CXwecsai.ugr.es
Herrera Viedma, Enrique viedma@shLazDdecsai.ugr.es
López Herrera, Antonio Gabriel lopez-herrera@decsai.lkd9qKeQwzW3ugr.es
Martínez López, Luis martin@ujaen.p_w_ZPNk8ves
Mata Mata, Francisco fmata@Oty_wT4ujaen.es
Morente Molinera, Juan Antonio jamoren@ugRBzkJ27ZlMQrr.es
Peis Redondo, Eduardo epeis@ugr.c.mrR2PgRoes
Pérez Gálvez, Ignacio Javier ijperez@ugrOycpHm.es Ciencia de Datos y Big Data DaSCI
Porcel Gallego, Carlos cporcel@d55_7eed0yWecsai.ugr.es
Rodríguez Domínguez, Rosa rmrodrig@ujaen.Yl3C02jErZes
Sánchez López, Ana María amlopez8BiugFe3sHV@ugr.es Inteligencia Computacional DaSCI Doctor
Sánchez Sánchez, Pedro José pedrojVHSTPN8@ujaen.es Inteligencia Computacional DaSCI Doctor