Angel García Vico

Categoría

Doctor

Contacto

agvico@ujGU0vAhs1YZVaen.es

Organismo

UJA

Researcher Profile

Total Desde 2020:
Citas Total: 297 Desde 2020: 236
Índice H Total: 10 Desde 2020: 8
Índice i10 Total: 10 Desde 2020: 8

Publicaciones (46)

Título Autores Año
Combining traditional and spiking neural networks for energy-efficient detection of Eimeria parasites IX Vázquez, BWD Ayasi, H Seker, J Luengo, J Sedano, AM García-Vico. 2024
Advancing Computational Frontiers: Spiking Neural Networks in High-Energy Efficiency Computing Across Diverse Domains B Ayasi, ÁM García-Vico, CJ Carmona, M Saleh. 2024
Deep Learning Inference on Edge: A Preliminary Device Comparison ML González, J Ruiz, L Andrés, R Lozada, ES Skibinsky, J Fernández, .... 2024
Low Consumption Models for Disease Diagnosis in Isolated Farms IX Vázquez, AM García-Vico, H Seker, J Sedano. 2024
Optimization of Transport Routes Through a Social Interaction Algorithm-Based Application DI Valdivia Alcalá, ÁM García Vico, CJ Carmona del Jesús. 2024
Exploring the implementation of LSTM inference on FPGA ML González, R Lozada, J Ruiz, ES Skibinsky-Gitlin, ÁM García-Vico, .... 2023
Consumption–Production Profile Categorization in Energy Communities W Rozas, R Pastor-Vargas, AM García-Vico, J Carpio. 2023
A Multiclustering Evolutionary Hyperrectangle-Based Algorithm LAP Martos, ÁM García-Vico, P González, CJC del Jesus. 2023
An Evolutionary Fuzzy System for Multiclustering in Data Streaming LAP Martos, ÁM García-Vico, P González, CJ Carmona. 2023
FAS-CT: FPGA-Based Acceleration System with Continuous Training MLG Hernandez, J Ruiz, R Lozada, ESS Gitlin, ÁM García-Vico, J Sedano, .... 2023
Predicting Course Enrollment with Machine Learning and Neural Networks: A Comparative Study of Algorithms B Ayasi, M Saleh, ÁM García-Vico, C Carmona. 2023
TSFEDL: A Python Library for Time Series Spatio-Temporal Feature Extraction and Prediction using Deep Learning (with Appendices on Detailed Network Architectures and … I Aguilera-Martos, ÁM García-Vico, J Luengo, S Damas, FJ Melero, .... 2022
A Case of Study with the Clustering R Library to Measure the Quality of Cluster Algorithms LAP Martos, ÁM García-Vico, P González, CJ Carmona. 2022
Spiking neural networks based on two-dimensional materials JB Roldan, D Maldonado, C Aguilera-Pedregosa, E Moreno, F Aguirre, .... 2022
TSFEDL: A Python Library for Time Series Spatio-Temporal Feature Extraction and Prediction using Deep Learning I Aguilera-Martos, ÁM García-Vico, J Luengo, S Damas, FJ Melero, .... 2022
A distributed evolutionary fuzzy system-based method for the fusion of descriptive emerging patterns in data streams ÁM García-Vico, CJ Carmona, P González, MJ del Jesus. 2022
Clustering: an R library to facilitate the analysis and comparison of cluster algorithms LAP Martos, ÁM García-Vico, P González, CJ Carmona. 2022
Performance/Resources Comparison of Hardware Implementations on Fully Connected Network Inference R Lozada, J Ruiz, ML González, J Sedano, JR Villar, ÁM García-Vico, .... 2022
A Preliminary Analysis on Software Frameworks for the Development of Spiking Neural Networks ÁM García-Vico, F Herrera. 2021
A cellular-based evolutionary approach for the extraction of emerging patterns in massive data streams ÁM García-Vico, C Carmona, P González, MJ del Jesus. 2021
A Comparison of Techniques for Virtual Concept Drift Detection ML González, J Sedano, ÁM García-Vico, JR Villar. 2021
E2PAMEA: un algoritmo evolutivo para la extraccion eficiente de patrones emergentes difusos en entornos big data AM Garcia-Vico, D Elizondo, F Charte, P González, CJ Carmona. 2021
FEPDS: A Proposal for the Extraction of Fuzzy Emerging Patterns in Data Streams AMG Vico, C Carmona, P Gonzalez, H Seker, MJ Del Jesus. 2020
E2PAMEA: A fast evolutionary algorithm for extracting fuzzy emerging patterns in big data environments AM Garcıa-Vico, F Charte, P González, D Elizondo, CJ Carmona. 2020
A Preliminary Many Objective Approach for Extracting Fuzzy Emerging Patterns AM Garcia-Vico, CJ Carmona, P Gonzalez, MJ del Jesus. 2020
Modelos descriptivos basados en aprendizaje supervisado para el tratamiento de big data y flujos continuos de datos ÁM García Vico. 2020
Techniques for Evaluating Clustering Data in R LA Pérez, AM García Vico, P González, CJ Carmona. 2020
A Big Data Approach for the Extraction of Fuzzy Emerging Patterns ÁM García-Vico, P González, CJ Carmona, MJ del Jesus. 2019
Study on the use of different quality measures within a multi-objective evolutionary algorithm approach for emerging pattern mining in big data environments ÁM García-Vico, P González, CJ Carmona, MJ del Jesus. 2019
Subgroup Discovery on Multiple Instance Data JM Luna, CJ Carmona, AM García-Vico, MJ del Jesus, S Ventura. 2019
Extracting Emerging Patterns with Change Detection in Time for Data Streams CJ Carmona, AM Garcia-Vico, P Gonzalez, MJ del Jesus. 2019
ALGORITMOS EVOLUTIVOS DE MINERÍA DE DATOS DESCRIPTIVA PARA FLUJOS CONTINUOS DE DATOS ÁM García-Vico. 2019
An overview of emerging pattern mining in supervised descriptive rule discovery: taxonomy, empirical study, trends, and prospects AM García‐Vico, CJ Carmona, D Martín, M García‐Borroto, MJ del Jesus. 2018
Moea-efep: Multi-objective evolutionary algorithm for extracting fuzzy emerging patterns ÁM García-Vico, CJ Carmona, P González, MJ del Jesus. 2018
Improvement of subgroup descriptions in noisy data by detecting exceptions P González, ÁM García-Vico, CJ Carmona, MJ del Jesus. 2018
MOEA-EFEP: Un algoritmo evolutivo multi-objetivo para la extraccion de patrones emergentes difusos AM Garcia-Vico, CJ Carmona, P González, MJ del Jesus. 2018
Una primera aproximación para la extracción de patrones emergentes en flujos continuos de datos ÁMG Vico, CJC del Jesus, PG García, MJ del Jesús Díaz. 2018
A first approach to handle fuzzy emerging patterns mining on big data problems: The EvAEFP-spark algorithm AM García-Vico, P González, MJ del Jesús, CJ Carmona. 2017
Analysing concentrating photovoltaics technology through the use of emerging pattern mining AM García-Vico, J Montes, J Aguilera, CJ Carmona, MJ del Jesús. 2016
The influence of noise on the evolutionary fuzzy systems for subgroup discovery J Luengo, AM García-Vico, MD Pérez-Godoy, CJ Carmona. 2016
Análisis descriptivo mediante aprendizaje supervisado basado en patrones emergentes CJ Carmona, FJ Pulgar-Rubio, AM García-Vico, P González, .... 2015
Usando Algoritmos de Descubrimiento de Subgrupos en R: El Paquete SDR ÁM Garcıa, F Charte, P González, CJ Carmona, MJ del Jesus. 2015
DESARROLLO DE UNA LIBRERÍA DE ALGORITMOS DE EXTRACCIÓN DE REGLAS DESCRIPTIVAS EN RY DE LA INTERFAZ DE USUARIO ASOCIADA. ÁM García-Vico. 2015

Descargando datos de la publicación