Combining traditional and spiking neural networks for energy-efficient detection of Eimeria parasites |
IX Vázquez, BWD Ayasi, H Seker, J Luengo, J Sedano, AM García-Vico. |
2024 |
Advancing Computational Frontiers: Spiking Neural Networks in High-Energy Efficiency Computing Across Diverse Domains |
B Ayasi, ÁM García-Vico, CJ Carmona, M Saleh. |
2024 |
Deep Learning Inference on Edge: A Preliminary Device Comparison |
ML González, J Ruiz, L Andrés, R Lozada, ES Skibinsky, J Fernández, .... |
2024 |
Low Consumption Models for Disease Diagnosis in Isolated Farms |
IX Vázquez, AM García-Vico, H Seker, J Sedano. |
2024 |
Optimization of Transport Routes Through a Social Interaction Algorithm-Based Application |
DI Valdivia Alcalá, ÁM García Vico, CJ Carmona del Jesús. |
2024 |
Exploring the implementation of LSTM inference on FPGA |
ML González, R Lozada, J Ruiz, ES Skibinsky-Gitlin, ÁM García-Vico, .... |
2023 |
Consumption–Production Profile Categorization in Energy Communities |
W Rozas, R Pastor-Vargas, AM García-Vico, J Carpio. |
2023 |
A Multiclustering Evolutionary Hyperrectangle-Based Algorithm |
LAP Martos, ÁM García-Vico, P González, CJC del Jesus. |
2023 |
An Evolutionary Fuzzy System for Multiclustering in Data Streaming |
LAP Martos, ÁM García-Vico, P González, CJ Carmona. |
2023 |
FAS-CT: FPGA-Based Acceleration System with Continuous Training |
MLG Hernandez, J Ruiz, R Lozada, ESS Gitlin, ÁM García-Vico, J Sedano, .... |
2023 |
Predicting Course Enrollment with Machine Learning and Neural Networks: A Comparative Study of Algorithms |
B Ayasi, M Saleh, ÁM García-Vico, C Carmona. |
2023 |
TSFEDL: A Python Library for Time Series Spatio-Temporal Feature Extraction and Prediction using Deep Learning (with Appendices on Detailed Network Architectures and … |
I Aguilera-Martos, ÁM García-Vico, J Luengo, S Damas, FJ Melero, .... |
2022 |
A Case of Study with the Clustering R Library to Measure the Quality of Cluster Algorithms |
LAP Martos, ÁM García-Vico, P González, CJ Carmona. |
2022 |
Spiking neural networks based on two-dimensional materials |
JB Roldan, D Maldonado, C Aguilera-Pedregosa, E Moreno, F Aguirre, .... |
2022 |
TSFEDL: A Python Library for Time Series Spatio-Temporal Feature Extraction and Prediction using Deep Learning |
I Aguilera-Martos, ÁM García-Vico, J Luengo, S Damas, FJ Melero, .... |
2022 |
A distributed evolutionary fuzzy system-based method for the fusion of descriptive emerging patterns in data streams |
ÁM García-Vico, CJ Carmona, P González, MJ del Jesus. |
2022 |
Clustering: an R library to facilitate the analysis and comparison of cluster algorithms |
LAP Martos, ÁM García-Vico, P González, CJ Carmona. |
2022 |
Performance/Resources Comparison of Hardware Implementations on Fully Connected Network Inference |
R Lozada, J Ruiz, ML González, J Sedano, JR Villar, ÁM García-Vico, .... |
2022 |
A Preliminary Analysis on Software Frameworks for the Development of Spiking Neural Networks |
ÁM García-Vico, F Herrera. |
2021 |
A cellular-based evolutionary approach for the extraction of emerging patterns in massive data streams |
ÁM García-Vico, C Carmona, P González, MJ del Jesus. |
2021 |
A Comparison of Techniques for Virtual Concept Drift Detection |
ML González, J Sedano, ÁM García-Vico, JR Villar. |
2021 |
E2PAMEA: un algoritmo evolutivo para la extraccion eficiente de patrones emergentes difusos en entornos big data |
AM Garcia-Vico, D Elizondo, F Charte, P González, CJ Carmona. |
2021 |
FEPDS: A Proposal for the Extraction of Fuzzy Emerging Patterns in Data Streams |
AMG Vico, C Carmona, P Gonzalez, H Seker, MJ Del Jesus. |
2020 |
E2PAMEA: A fast evolutionary algorithm for extracting fuzzy emerging patterns in big data environments |
AM Garcıa-Vico, F Charte, P González, D Elizondo, CJ Carmona. |
2020 |
A Preliminary Many Objective Approach for Extracting Fuzzy Emerging Patterns |
AM Garcia-Vico, CJ Carmona, P Gonzalez, MJ del Jesus. |
2020 |
Modelos descriptivos basados en aprendizaje supervisado para el tratamiento de big data y flujos continuos de datos |
ÁM García Vico. |
2020 |
Techniques for Evaluating Clustering Data in R |
LA Pérez, AM García Vico, P González, CJ Carmona. |
2020 |
A Big Data Approach for the Extraction of Fuzzy Emerging Patterns |
ÁM García-Vico, P González, CJ Carmona, MJ del Jesus. |
2019 |
Study on the use of different quality measures within a multi-objective evolutionary algorithm approach for emerging pattern mining in big data environments |
ÁM García-Vico, P González, CJ Carmona, MJ del Jesus. |
2019 |
Subgroup Discovery on Multiple Instance Data |
JM Luna, CJ Carmona, AM García-Vico, MJ del Jesus, S Ventura. |
2019 |
Extracting Emerging Patterns with Change Detection in Time for Data Streams |
CJ Carmona, AM Garcia-Vico, P Gonzalez, MJ del Jesus. |
2019 |
ALGORITMOS EVOLUTIVOS DE MINERÍA DE DATOS DESCRIPTIVA PARA FLUJOS CONTINUOS DE DATOS |
ÁM García-Vico. |
2019 |
An overview of emerging pattern mining in supervised descriptive rule discovery: taxonomy, empirical study, trends, and prospects |
AM García‐Vico, CJ Carmona, D Martín, M García‐Borroto, MJ del Jesus. |
2018 |
Moea-efep: Multi-objective evolutionary algorithm for extracting fuzzy emerging patterns |
ÁM García-Vico, CJ Carmona, P González, MJ del Jesus. |
2018 |
Improvement of subgroup descriptions in noisy data by detecting exceptions |
P González, ÁM García-Vico, CJ Carmona, MJ del Jesus. |
2018 |
MOEA-EFEP: Un algoritmo evolutivo multi-objetivo para la extraccion de patrones emergentes difusos |
AM Garcia-Vico, CJ Carmona, P González, MJ del Jesus. |
2018 |
Una primera aproximación para la extracción de patrones emergentes en flujos continuos de datos |
ÁMG Vico, CJC del Jesus, PG García, MJ del Jesús Díaz. |
2018 |
A first approach to handle fuzzy emerging patterns mining on big data problems: The EvAEFP-spark algorithm |
AM García-Vico, P González, MJ del Jesús, CJ Carmona. |
2017 |
Analysing concentrating photovoltaics technology through the use of emerging pattern mining |
AM García-Vico, J Montes, J Aguilera, CJ Carmona, MJ del Jesús. |
2016 |
The influence of noise on the evolutionary fuzzy systems for subgroup discovery |
J Luengo, AM García-Vico, MD Pérez-Godoy, CJ Carmona. |
2016 |
Análisis descriptivo mediante aprendizaje supervisado basado en patrones emergentes |
CJ Carmona, FJ Pulgar-Rubio, AM García-Vico, P González, .... |
2015 |
Usando Algoritmos de Descubrimiento de Subgrupos en R: El Paquete SDR |
ÁM Garcıa, F Charte, P González, CJ Carmona, MJ del Jesus. |
2015 |
DESARROLLO DE UNA LIBRERÍA DE ALGORITMOS DE EXTRACCIÓN DE REGLAS DESCRIPTIVAS EN RY DE LA INTERFAZ DE USUARIO ASOCIADA. |
ÁM García-Vico. |
2015 |